

Available online at www.sciencedirect.com

PHYSICA G

Physica C 460-462 (2007) 518-519

www.elsevier.com/locate/physc

The interplay between weak ferromagnetism and superconductivity in RuSr₂EuCu₂O₈

D.C. Ling ^{a,*}, C.H. Chen ^a, Y.Y. Chen ^b, B.C. Chang ^c, H.C. Ku ^c

^a Department of Physics, Tamkang University, Tamsui 25137, Taiwan ^b Institute of Physics, Academia Sinica, Taipei 11529, Taiwan ^c Department of Physics, National Tsing Hua University, Hsinchu 30043, Taiwan

Available online 30 March 2007

Abstract

The magnetic field dependence of the low-temperature specific heat (LTSH) and I-V characteristics measurements on RuSr₂EuCu₂O₈ were systematically carried out. It is found that the linear-*T* term γ decreases with increasing *H*, in contrast to the predicted result for the clean d-wave superconductivity. This finding suggests that the interaction between quasiparticles and magnons be weakened by magnetic field. In addition, the LTSH data exhibits a remarkably large T^2 term for both H = 0 and $H \neq 0$. The T^2 term might be predominately associated with weak ferromagnetism in the Ru sublattice. Furthermore, the effective flux pinning energy E(H, T) determined from fitting the nonlinear region of the I-V curves follows a power-law dependence on magnetic field with an exponent close to -0.5 at a fixed temperature, indicating that the vortex lines of RuSr₂EuCu₂O₈ is quasi-two-dimensional.

Keywords: Low-temperature specific heat; d-wave superconductivity; Weak ferromagnetism

1. Introduction

Coexistence of superconductivity (SC) and weak ferromagnetism (WFM) has been reported in ruthenate-cuprates RuSr₂RCu₂O₈ (Ru-1212) with R = Gd, Eu, Y, and Sm [1,2]. Neutron measurements show that the WFM originates from a canted *G*-type antiferromagnetic order of Ru moments, which gives rise to a small net moment in the RuO₂ basal planes [3]. Up to date, how SC and WFM of Ru-1212 accommodate each other is still an open issue. To shed a light on understanding of interplay between SC and WFM in Ru-1212, low-energy quasiparticle excitations and vortex dimensionality of RuSr₂EuCu₂O₈ were studied by LTSH and *I–V* characteristic measurements. The advantage of RuSr₂EuCu₂O₈ is that $\mu_{Eu^{3+}} \approx 0$ makes electronic specific heat not be overshadowed by a decent upturn associated with entropy change of magnetic order-

E-mail address: dcling@mail.tku.edu.tw (D.C. Ling).

0921-4534/\$ - see front matter @ 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.physc.2007.03.280

ing of other R^{3+} at low temperatures and local magnetic field associated with Eu^{3+} be negligible.

2. Experimental

The samples investigated were prepared by the solidstate reaction method. Stoichiometric powders of Eu₂O₃, SrCO₃, RuO₂, and CuO were ground thoroughly and calcined at 960 °C in air for 12 h, followed by sintering at 1010 °C in N₂ for 10 h then annealing at 1060 °C in flowing oxygen for 7 days. The crystal structure of the samples was characterized by X-ray diffraction with CuK_{α} radiation. LTSH measurements were made by a thermal-relaxation microcalorimeter and *I*–*V* characteristics measurements were done with PPMS in fields up to 8 T.

3. Results and discussion

Fig. 1 shows C(T)/T versus T^2 plot from 1.5 K to 10 K under various fields. It is clear that all plots exhibit a deviation from $\gamma T + \beta T^3$ behavior at low temperatures, where

^{*} Corresponding author. Tel.: +886 2 26215656x2035; fax: +886 2 26209917.

Fig. 1. C/T versus T^2 plot under different fields for RuSr₂EuCu₂O₈. The solid line is a fitting curve of $C/T = \gamma(H) + \beta T^2 + \alpha(H)T$.

Fig. 2. Low-temperature specific heat as a function of temperature at $\mu_0 H = 0$ T and 8 T. The inset displays the linear-*T* term γ as a function of magnetic field.

the slope β is the coefficient of the lattice T^3 term and the intercept γ is the coefficient of the linear electronic specific heat and proportional to density of states near Fermi level $E_{\rm F}$. The data are best fitted to $C(T,H) = \gamma(H)T + \beta$ $T^3 + \alpha(H)T^2$. In zero-field, $\gamma(0) = 2.24 \text{ mJ/mol K}^2$ is as large as that of YBCO, $\beta = 0.549 \text{ mJ/mol K}^4$ corresponds to Debye temperature $\theta_D = 367$ K, and $\alpha = 3.95$ mJ/ mol K³. It should be noted that the αT^2 term of RuSr₂Eu-Cu₂O₈ is 64% of total zero-field specific heat and much larger than the phonon contribution βT^3 at 2 K, in contrast to YBCO with αT^2 term less than or comparable to 5% of βT^3 term at 2 K [4]. More interestingly, the $\alpha(H)$ appears to have the same order of magnitude as the zero-field α . The remarkably large T^2 term for both H = 0 and $H \neq 0$ might predominately arise from anomalous spin wave excitations of the weak ferromagnetism in the Ru sublattice.

The representative magnetic field dependence of the LTSH from 0.5 K to 3.0 K is plotted in Fig. 2. It is striking that a decrease of the specific heat is observed under magnetic field. The linear-T term γ decreases with increasing H

Fig. 3. *E* versus $\mu_0 H$ plot at 4.5 K in a logarithmic scale. The inset displays I-V curve at 4.5 K under different fields.

as shown in the inset of Fig. 2, in contrast to $\gamma(H) \propto H^{1/2}$ predicted for superconductivity with lines of nodes in the gap function [5]. This finding suggests that the interaction between quasiparticles and magnons associated with the WFM be weakened by magnetic field. As a result, it leads to a reduction of density of states at Fermi level.

The magnetic field dependence of the effective flux pinning energy E at 4.5 K, determined from fitting the nonlinear region of I-V curves displayed in the inset of Fig. 3 with $V \propto I \exp(-E(H,T)/k_{\rm B}T)$, is shown in Fig. 3. E follows a power-law dependence on H with an exponent of -0.57 for H < 1000 G and -0.69 for H > 1000 G, respectively. It has been demonstrated that E varies as $H^{-0.5}$ in 2D vortices and with a smaller value of E compared with 3D vortices [6]. The deduced value of the exponent is close to -0.5 and E is on the order of magnitude of 10 meV, comparable to what is observed in BSCCO, strongly suggesting that the vortex lines of RuSr₂EuCu₂O₈ is quasitwo-dimensional caused by the WFM in the RuO₂ basal planes.

Acknowledgment

This work was supported by the National Science Council of ROC under grant No. NSC 94-2212-M-032-003.

References

- [1] J.L. Tallon et al., IEEE Trans. Appl. Supercond. 9 (1999) 1696.
- [2] C. Bernhard et al., Phys. Rev. B 59 (1999) 14099.
- [3] J.D. Jorgensen et al., Phys. Rev. B 63 (2001) 054440.
- [4] K.A. Moler et al., Phys. Rev. B 55 (1997) 3954.
- [5] G.E. Volovik, JETP Lett. 58 (1993) 469.
- [6] G. Blatter et al., Rev. Mod. Phys. 66 (1994) 1125.